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1. The Monge problem of optimal transportation

The problem can be informally described as follows: given X , Y ⊂ Rn,
we have two distributions of mass ρ(x) in X and ρ′(y) in Y satisfying
the mass balance condition∫

X
ρ(x) dx =

∫
Y
ρ′(y) dy

and we want to move ρ into ρ′ in such a way that the work done is
minimal.
The admissible movements are descrived by a transport map
T : X → Y such that the local mass balance condition holds:∫

T−1(E)
ρ(x) dx =

∫
E
ρ′(y) dy ∀E ⊂ Y .
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The local mass balance condition

X
Y

E

T
(   T−1 )E
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Since work=mass×displacement, we have to minimize

E(T ) :=

∫
X
|T (x)− x |ρ(x) dx

among all admissible transport maps T .

Example (Book shifting)
We let n = 1, M integer, X = [0,M], Y = [1,M + 1]. Then, the map
x 7→ x + 1 is optimal, but the map

T (x) =

{
x + M if x ∈ [0,1);
x if x ∈ [1,M]

is optimal as well.
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Despite its very classical and “natural” structure, this variational
problem was not considered so much, in contrast with the variational
problems, for instance, arising from Mechanics:

A(x) :=

∫ 1

0
L (t , x(t), ẋ(t)) dt .

As a matter of fact, even some basic issues, as the analogue of the
Euler-Lagrange equations

d
dt

Lẋ (t , x(t), ẋ(t)) = Lx (t , x(t), ẋ(t))

were not understood, until much more recent times.
Indeed, the problem could be attacked successfully only with the
modern tools of Measure Theory and Functional Analysis, with the
seminal work of Kantorovich, in 1940.
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In even more recent times (last 15-20 years) many more connections
are emerging between this theory and many other fields: Shape
Optimization, Geometric and Functional inequalities, Nonlinear
diffusion, Partial Differential Equations, Riemannian Geometry.

A (surely non exhaustive) list includes: Barthe, Bernard, Brenier,
Buttazzo, Mc Cann, Cavalletti, Caffarelli, A., Carrillo, Gangbo, Gigli, De
Philippis, Fathi, Figalli, Cordero Erausqin, Evans, Kinderlehrer, Savaré,
Pratelli, Bouchittè, Feldman, Lott, Mondino, Naber, Otto, Rachev,
Rüschendorf, Sturm, Toscani, Villani, Von Renesse.
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A modern formulation of the optimal transport problem
We consider:
• a probability measure µ in X ;
• a probability measure ν in Y ;
• a function c : X × Y → [0,+∞].

Then, we minimize the energy

E(T ) :=

∫
X

c (x ,T (x)) dµ(x)

among all maps T satisfying

µ(T−1(E)) = ν(E) ∀E ⊂ Y

(in short, we will write T#µ = ν).
An even more general formulation, allowing transport plans instead of
transport maps, was considered by Kantorovich, and is very popular
and studied in Probability: find a law in X × Y whose marginals are
µ and ν, and such that the expectation of c is minimal.
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2. Structure of optimal transport maps
One of the basic tools to show existence of optimal transport maps is
a duality formula: the minimum in Monge’s problem is the supremum
(and in lucky cases the maximum) of∫

X
ϕdµ(x) +

∫
Y
ψ dν(y)

among all pairs ϕ : X → R, ψ : Y → R satifying

ϕ(x) + ψ(y) ≤ c(x , y) ∀(x , y) ∈ X × Y .

As a consequence of this fact, for many cost functions c, strong
restrictions arise on the possible places y where mass initially at x
could be sent (in an optimal way!), namely

ϕ(x) + ψ(y) = c(x , y).
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Cost=distance
Assume for instance that X = Y = Rn, and that c(x , y) = |x−y |. Then,
by the minimality of

x ′ 7→ |x ′ − y | − ϕ(x ′)− ψ(y)

at x ′ = x , if ϕ is differentiable at x , we get

x − y
|x − y |

= ∇ϕ(x).

Therefore the direction of transportation is given by −∇ϕ(x) and only a
(unavoidable) 1-dimensional degree of freedom is left.

Theorem (Evans–Gangbo, ’95)
Assume that X = Y = Rn, c(x , y) = |x − y |, and µ� L n. Then there
exists an optimal transport map.
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Cost=distance2

Assume for instance that X = Y = Rn, and that c(x , y) = 1
2 |x − y |2.

Then, by the minimality of

x ′ 7→ 1
2
|x ′ − y |2 − ϕ(x ′)− ψ(y)

at x ′ = x , if ϕ is differentiable at x , we get

y = x −∇ϕ(x) = ∇
(

1
2
|x |2 − ϕ(x)

)
.

Theorem (Brenier, Knott–Smith, ’80)

Assume that X = Y = Rn, c(x , y) = 1
2 |x − y |2, and µ� L n. Then

there exists a unique optimal transport map. Furthermore, this map is
the gradient of a convex function.
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Cost=distance2 on Riemannian manifolds

Assume for instance that X = Y = M, a compact Riemannian
manifold, and that c(x , y) = 1

2d2
M(x , y). Then, nowithstanding the lack

of differentiability of d2
M(·, y) in the large, we have:

Theorem (McCann, ’01)

Assume that X = Y = M, c(x , y) = 1
2d2

M(x , y), and µ� VolM . Then
there exists a unique optimal transport map, representable by

T (x) = expx (−∇ϕ(x)) for µ-a.e. x.

Furthermore, T never goes “beyond” the cut locus, namely
t 7→ expx (−t∇ϕ(x)) is a minimizing geodesic in [0, s] for all s < 1.

Luigi Ambrosio (SNS) The optimal transport problem Rome, June 2017 13 / 34



logoSNScol

3. The metric side of optimal transportation
The minimum value in Monge’s (or Kantorovich’s) problem can be used
to define a distance, called Wasserstein distance, between probability
measures in X . In the case cost=distance, we set

W1(µ, ν) := inf
{∫

X
d(x ,T (x)) dµ(x) : T#µ = ν

}
.

In the case cost=distance2, instead, we set

W2(µ, ν) := inf

{√∫
X

d2(x ,T (x)) dµ(x) : T#µ = ν

}
.

The “manifold” P2(X ) of probability measures on X with finite quadratic
moments becomes in this way a metric space, which inherits many
properties of X (e.g., compact if X is compact, complete if X is
complete, PC if X is PC, non-branching if X is non-branching,....).
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W2 metrizes weak convergence plus convergence of
moments

Theorem
For µn, µ ∈P2(X ), one has that W2(µn, µ)→ 0 if and only if

lim
n→∞

∫
X
φdµn =

∫
X
φdµ ∀φ ∈ Cb(X )

and
lim

n→∞

∫
X

d2(x , x̄) dµn(x) =

∫
X

d2(x , x̄) dµ(x)

for at least one (and thus for all) x̄ ∈ X.
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Geodesics in the Wasserstein space
Having put a metric structure on P2(X ), it is natural to study geodesics
{µt}t∈[0,1] (i.e. length minimizing curves) in this space. Up to a
reparameterization, they are characterized by

W2(µs, µt ) = |t − s|W2(µ0, µ1) s, t ∈ [0,1].

For instance, in the case X = Y = M, compact Riemannian manifold,
we have a complete characterization:

Theorem
Assume that µ� VolM and let T (x) = expx (−∇ϕ(x)) be the optimal
transport map between µ and ν. Then

µt := (Tt )#µ with Tt (x) := expx (−t∇ϕ(x)) t ∈ [0,1]

is the unique constant speed geodesic between µ and ν.
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Interpolation between (δA + δB)/2 and (δC + δD)/2
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4. Some applications
The theory of optimal transportation provides a new “nonlinear”
perspective on P(X ) that is very useful and suggestive in many
applications.
Let us consider for instance the problem of interpolating between two
probability densities ρ, ρ′ in Rn. The linear, canonical way:

ρt := (1− t)ρ+ tρ′ t ∈ [0,1].

The “Wasserstein” way (I=identity map): whenever T#ρ = ρ′, one
defines the interpolating curve

ρt := ((1− t)I + tT )# ρ t ∈ [0,1].

This is still linear, but at the level of transport maps, and nothing but
the geodesic interpolation, if T is an optimal transport map.
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We may for instance consider a model in which the free energy is given
by

E(ρ) :=

∫
ρ ln ρdx +

∫
V (x)ρ(x) dx +

∫ ∫
W (x − y)ρ(x)ρ(y) dxdy .

In general, because of the interaction potential term, this functional is
not convex with respect to the linear interpolation, while it is convex
with respect to the Wasserstein one, if V and W are convex.
This interpolation argument has been used to show uniqueness of
ground states.
Finally, notice that the potential energy term ρ 7→

∫
Vρ is linear w.r.t. the

standard linear structure of P(Rn), but nonlinear w.r.t. the Wasserstein
one: ∫

Vρt dx =

∫
V ((1− t)x + tT (x)) ρ0(x) dx t ∈ [0,1].

Indeed, we will see that the “Wasserstein gradient" is ∇V and it is not
constant!
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The Brunn-Minkowski inequality

Given A, B ⊂ Rn compact, this inequality says that

Vol1/n(A + B) ≥ Vol1/n(A) + Vol1/n(B),

where A + B is the Minkowski sum of A and B:

A + B := {a + b : a ∈ A, b ∈ B} .

This inequality can be used, for instance, to prove another important
inequality (with sharp constant C(n)), the isoperimetric one:

Vol1/n(A) ≤ C(n)Area1/(n−1)(∂A) n > 1.
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Proof of BM via optimal transportation
McCann pointed out in his PhD thesis that a direct proof via optimal
transportation of the Brunn-Minkowski inequality, in the scaled version

Vol1/n
(

A + B
2

)
≥ 1

2
Vol1/n(A) +

1
2

Vol1/n(B)

can be achieved as follows. First, define the energy

E(ρ) :=

∫
ρ1− 1

n dx

and show that E is concave along Wasserstein geodesics. Then, set

ρA(x) :=

{
1

Vol(A) if x ∈ A

0 if x /∈ A,
ρB(x) :=

{
1

Vol(B) if x ∈ B

0 if x /∈ B

and denote by {ρt}t∈[0,1] the constant speed geodesic between ρA and
ρB. Then, the conclusion follows by

E(ρ0) = Vol1/n(A), E(ρ1) = Vol1/n(B), E(ρ1/2) ≤ Vol1/n
(

A + B
2

)
.
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The differential side of optimal transportation

Having a metric structure on P(X ), we may ask ourselves whether a
deeper structure (differential, Riemannian) exists, compatible with the
Wasserstein distance, when X has a differentiable structure.
Let X = Rn. The basic ingredient is the continuity equation

d
dt
µt + div (v tµt ) = 0

describing the evolution of a time-dependent mass distribution µt
under the action of a velocity field v t (x). According to this equation,
infinitesimal variations s = δµ ∈ TµP2(Rd ) of µ are coupled to the
velocity v by

δµ+ div (vµ) = 0.
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Otto calculus
Looking for gradient vector fields, one is led to the coupling
−div(µ∇φ) = s linking potential functions φ to tangent vectors s, and
to the metric (Otto)

gµ(s, s′) :=

∫
∇φ · ∇φ′ dµ with −div(µ∇φ) = s, −div(µ∇φ′) = s′.

Having defined a tangent bundle and a metric on it, the “Riemannian”
distance d(ν, ν ′) induced by this metric is

inf


√∫ 1

0

∫
|v t |2 dµt dt :

d
dt
µt + div (v tµt ) = 0, µ0 = ν, µ1 = ν ′

 .

It turns out that (Benamou-Brenier) this distance is precisely the
Wasserstein distance W2. So, P(Rn) is a kind of infinite-dimensional
Riemannian manifold. This has been the object of several investigations
in the last 10-15 years, and by now a complete and rigorous theory is
available.
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The heat flow is the W2-gradient flow of the Entropy!
Let’s see how with this calculus we can (at least formally) recover the
heat equation as gradient flow of the entropy functional

Ent(ρ) :=

∫
Rn
ρ log ρdx

in P2(Rn). Indeed,

dρEnt(s) =

∫
Rn

(1 + log ρ)s dx =

∫
Rn

s log ρdx

and, if we represent s = −div (wρ), we get

dρEnt(s) =

∫
Rn
〈∇ log ρ,w〉ρdx

which tells us, remembering our metric tensor gρ, that the "Wasserstein
gradient" ∇W Ent of the Entropy at ρ is ∇ log ρ.
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The heat flow is the W2-gradient flow of the Entropy!

In an analogous way, it can be seen that

∇W
∫
Rn

V dµ = ∇V viewed as an element of L2(µ;Rn)!

and that

∇W
∫
Rn

K (x−y) dµ×µ = ∇(K ∗µ) viewed as an element of L2(µ;Rn).

Now, coming back to Ent, writing

d
dt
ρt + div

(
−∇ρt

ρt
ρt
)

=
d
dt
ρt −∆ρt = 0

we realize that the velocity field v t is −∇ log ρt = −∇W Ent(ρt ).
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Another key identification
When we look at the heat flow from the W2 point of view, the rate of
energy dissipation d

dt Ent(ρt ) is

−|∇−Ent|2(ρt )

where |∇−Ent| is a one-sided gradient, the so-called descending slope:

|∇−Ent|(ρ) := lim sup
σ→ρ

[Ent(ρ)− Ent(σ)]+

W2(ρ, σ)

is the so-called descending slope.
On the other hand, a direct "conventional" computation gives

d
dt

∫
ρt log ρt dx =

∫
(1 + log ρt )∆ρt dx = −

∫
|∇ρt |2

ρt
dx .

Hence (at least formally, taking limits as t → 0)

|∇−Ent|2(ρ) =

∫
|∇ρ|2

ρ
dx = 4

∫
|∇√ρ|2 dx !
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Gradient flows, optimal transportation and (nonlinear,
diffusion) PDE’s

LetM be a smooth manifold, and F :M→ R. The gradient flow of F
starting from x̄ is the solution to the ODE{

ẋ(t) = −∇F (x(t))

x(0) = x̄ ,
x : [0,T ]→M

Remarks. (1) A metric onM is needed, to identify dF (x) (a covector)
with ∇F (x) (a vector).
(2) The energy dissipation identity holds:

d
dt

F (x(t)) = dFx (ẋ(t)) = − |∇F (x(t))|2 .
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A model case: uniformly convex functions in Rn

Assume that M = Rn, and that the following uniform convexity
condition holds (λ > 0):

n∑
i,j=1

∂2F
∂xi∂xj

(x)ξiξj ≥ λ|ξ|2 ∀ξ ∈ Rn.

In this case:
(1) solutions to the gradient flow converge exponentially fast to the
unique minimum xmin of F ;
(2) the semigroup induced by the gradient flow is strongly nonexpan-
sive:

|x(t , x̄)− x(t , x̂)| ≤ e−λt |x̄ − x̂ |.
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Entropy-entropy dissipation inequality
To prove convergence to equilibrium, we prove first the entropy-entropy
dissipation inequality

F (x)− F (xmin) ≤ 1
2λ
|∇F (x)|2.

We have indeed (by the 2-order mean value theorem and the uniform
convexity condition with ξ = x − xmin)

F (x)− F (xmin) ≤ 〈∇F (x), x − xmin〉 −
λ

2
|x − xmin|2

≤ |∇F |(x)|x − xmin| −
λ

2
|x − xmin|2

≤ 1
2λ
|∇F (x)|2 +

λ

2
|x − xmin|2 −

λ

2
|x − xmin|2.
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Now the proof of the exponential rate of convergence is easy: we
differentiate F (x(t)) − F (xmin) and use the energy-energy dissipation
inequality to get

d
dt

[F (x(t))− F (xmin)] = − |∇F (x(t))|2 ≤ −2λ [F (x(t))− F (xmin)] .

By integration, [F (x(t))− F (xmin)] ≤ [F (x̄)− F (xmin)]e−2λt . Finally, the
uniform convexity condition easily yields the energy-distance bound:

F (x)− F (xmin) ≥ λ

2
|x − xmin|2 ∀x ∈ Rn.

Therefore, exponential convergence to F (x(t)) to its minimal value
yields exponential convergence of x(t) to xmin.

Luigi Ambrosio (SNS) The optimal transport problem Rome, June 2017 30 / 34



logoSNScol

Diffusion PDE’s and functional inequalities

The previous analysis of convex gradient flows in Euclidean spaces
can be extended with no problem to nonsmooth convex gradient flows,
even in infinite-dimensional Hilbert spaces H (thanks to the work of
Brezis, Komura, Benilan, Pazy in the ’70).

However, it is rather surprising that this whole picture still holds
for convex (along constant speed geodesics) functionals in the
infinite-dimensional and curved space P(Rn) (or P(H))

This fact has generated many new results and new proofs on
convergence to equilibrium for diffusion PDE’s, and functional
inequalities.
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The relative entropy functional
As a model case, we consider a uniformly convex function V : Rn →
[0,+∞] with

∫
e−V dx = 1, and the probability measure γ in Rn whose

density w.r.t. L n is e−V (the Gaussian, for V (x) = c(d) + |x |2/2).
Then, we consider the relative entropy functional

Eγ(f ) :=

∫
Rn

(f ln f + fV ) dx =

∫
Rn

u ln u dγ,

where u = eV f represents the density of fL n with respect to γ.
In this case fmin = e−V , so that umin = 1.
It turns out that the Fokker-Planck equation

df
dt

= ∆f + div(f∇V ) = div (∇(ln f + 1 + V )f )

corresponds to the gradient flow of Eγ with respect to W2, according
to the differential calculus on P(Rn) described before (this is based
on the fact that the blue term is the functional derivative of Eγ with
respect to γ).
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Talagrand and logarithmic Sobolev inequalities

In addition, because of the uniform convexity of V , Eγ is uniform convex
as well:

Eγ(ρt ) ≤ (1− t)Eγ(ρ0) + tEγ(ρ1)− λ

2
t(1− t)W 2

2 (µ0, µ1).

Therefore the energy-distance bound and the energy-energy
dissipation inequality apply.
The former corresponds, in the Gaussian case, to Talagrand’s
inequality

W 2
2 (uγ, γ) ≤ 2

λ

∫
u ln u dγ.
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The latter corresponds to∫
f ln f + fV dx ≤ 1

2λ

∫
|∇(ln f + V )|2f dx .

With the change of variables f = h2e−V we get the logarithmic Sobolev
inequality∫

h2 ln h2 dγ ≤ 2
λ

∫
|∇h|2 dγ +

(∫
h2 dγ

)
ln
(∫

h2 dγ
)
.

The same theory provides convergence and error estimates for implicit
time discretization of gradient flows in P(X ), even when the ambient
space X = Rn is replaced by an infinite-dimensional Hilbert space.
Hence, the infinite-dimensional versions of the Fokker-Planck equation,
and even some non-linear variants, can be studied with these
methods.
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